



# Week 6: Applying strain and stress in multiple dimensions

1. Properties of materials
2. Limiting behavior
3. Torsion



Will it bend?!?



Limiting  
behavior and  
failure

Stiffness: the property that enables a material to withstand high stress without great strain. It results in a steep first part of the stress strain curve. The stiffness is a function of the elastic modulus

Strength: determines the greatest stress that a material can withstand before failure. It depends on the material and the situation if failure refers to the yield point or the fracture point.

Elasticity: enables a material to regain its original dimensions after a deforming load is removed

Brittleness: the absence of any plastic deformation before abrupt failure

Ductility: describes the amount of plastic deformation that a material can undergo in tension before rupture

Malleability: describes the amount of plastic deformation that a material can undergo in compression before rupture

Toughness: the amount of energy that is required to crack a material. It enables a material to withstand high impact loads. In such loads, some of the impact energy is transferred and absorbed by the body.

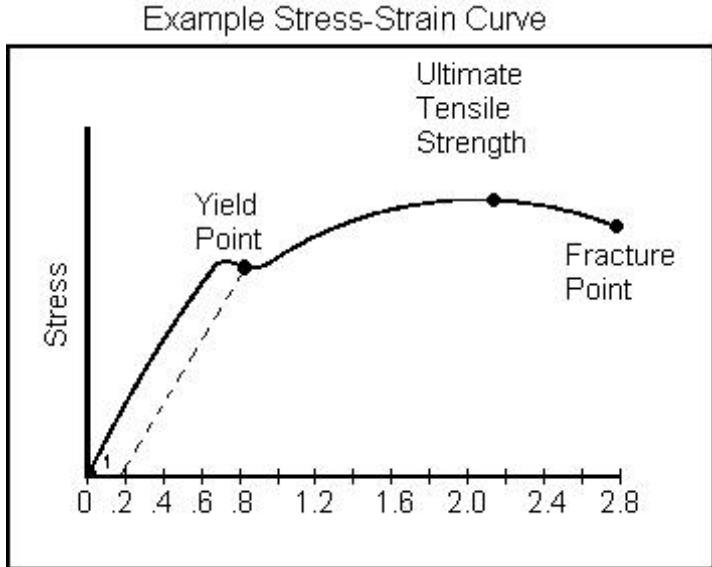
Resilience: the ability of a material to endure high impact loads without inducing a stress above the elastic limit. In resilient materials, the energy of the impact is stored in the body and recovered when the body is unloaded.



# Limiting behavior - What is failure?

The stress or strain at which a structure fails depends very much on the application!

- Failure is generally defined as no longer fulfilling the desired function.
- Deviation from the desired function of a structure is defined with respect to *failure criteria*:
  - *what is the maximum allowable strain for a given load?*
  - *what is the maximum allowable stress?*
  - ...
- Here we are concerned with the *materials aspect* of the failure



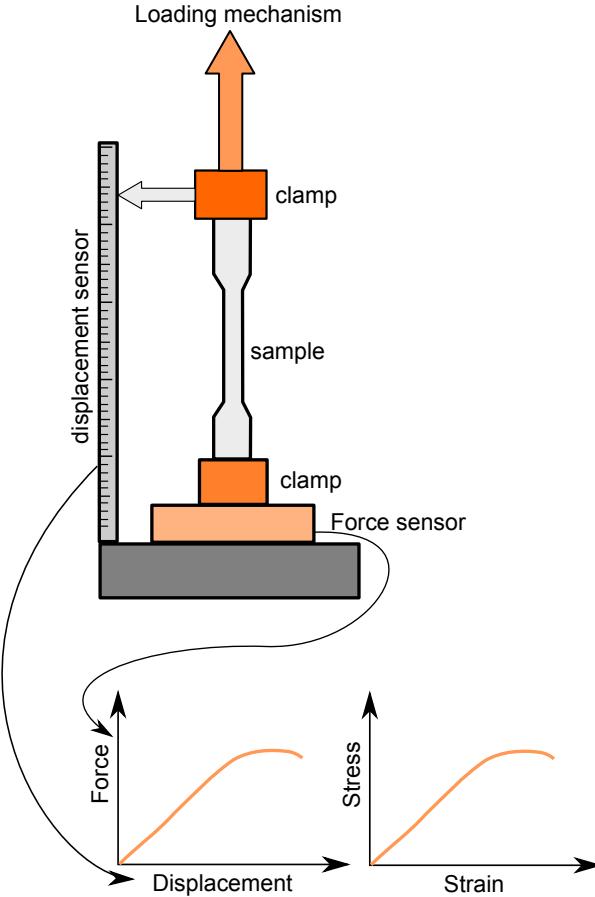
# The stress/strain curve

- Hooke's law only describes the early region of the stress/strain curve
- Beyond the yield point much less stress is required to obtain a large strain
- fracture point  $\neq$  yield point
- "failure point" is a matter of definition for different applications
- Stress strain curves are recorded through experimental mechanical testing

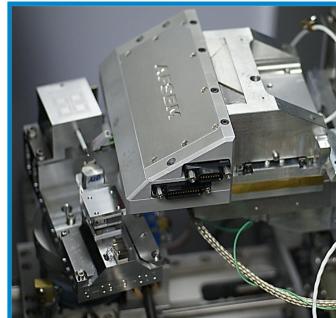
General purpose tensile and compression tester

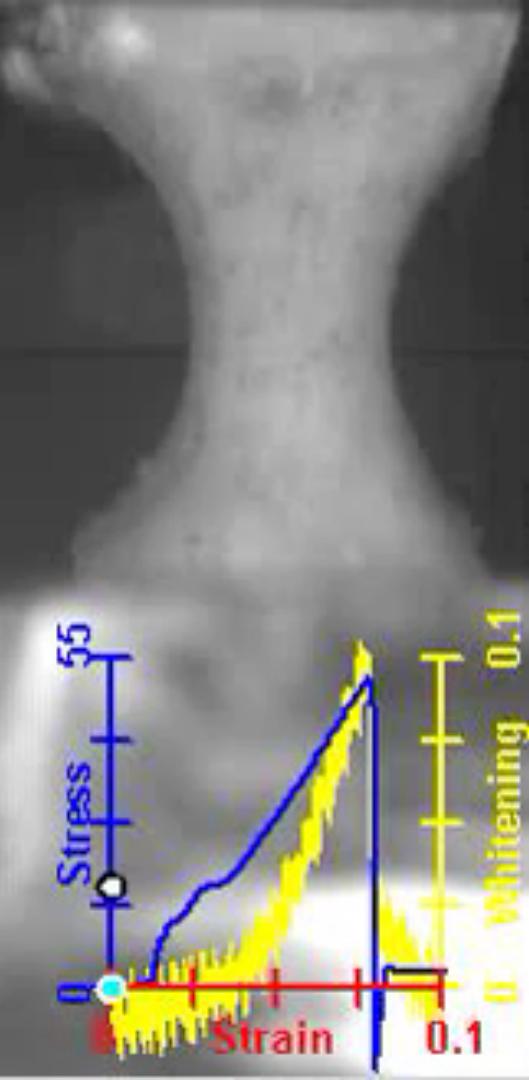


In vivo testing



Nanomechanical testing





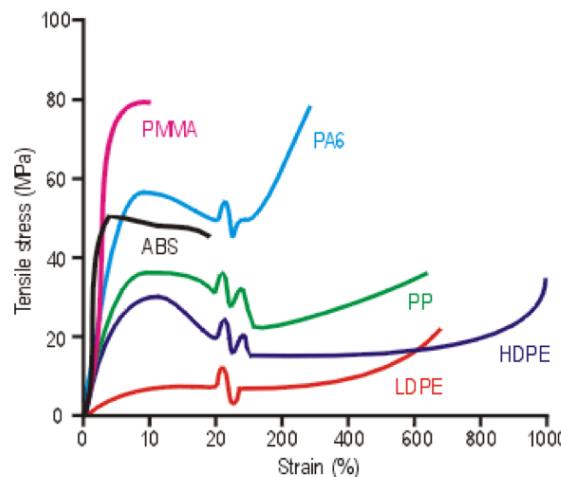
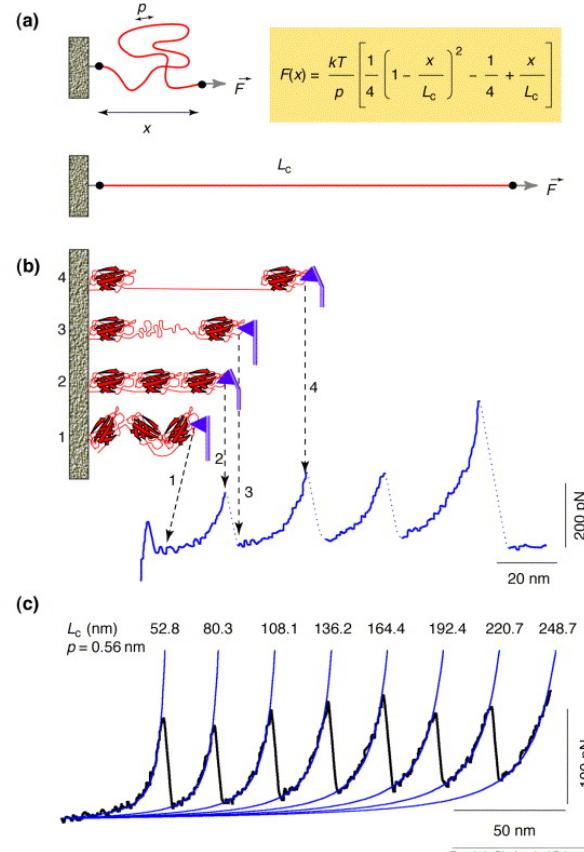
# Tensile test of demineralized bone

Stress-strain tests are often accompanied by some form of imaging method to observe local and global deformations.

# Complex stress/strain curves

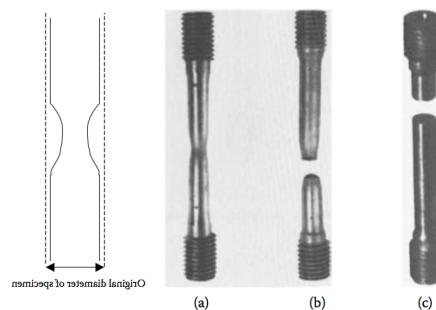
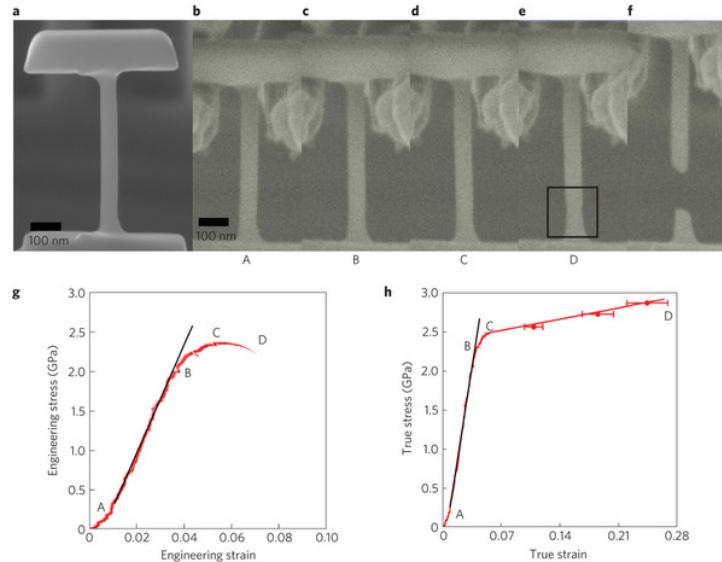


Stress-Strain Curve of Collagen Fiber

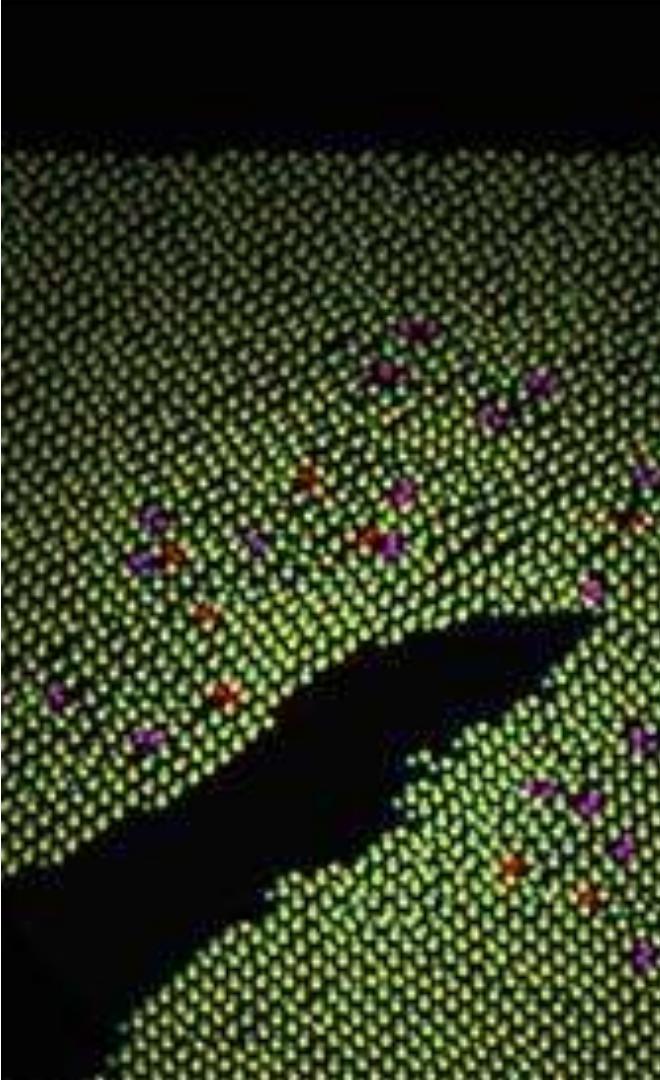


# Macroscopic manifestations of stress/strain curve

- “Necking”: before failure of ductile materials, they exhibit necking, which is a result of the Poisson effect in combination with stress concentration effect



Jang et al. *Nature Materials* 9, 215–219 (2010)  
Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses



# Atomic origin of fracture strength

- The fracture strength of a brittle elastic material ideally depends on the intermolecular bond strength between the molecules
- From theory: the fracture strength should be 1/10 of the elastic modulus  $E$
- In reality: the fracture strength is 1/100 to 1/10.000 of  $E$
- The fracture strength is strongly determined by flaws in the material (crystal dislocations, microcracks, impurities) that lead to stress concentration

- Real world loading conditions are different than the loading conditions in which the materials values are measured in the laboratory
- We need reliable criteria that predict when a structure fails and when not.
- Different geometries and materials require different failure criteria
- **Maximum normal stress criterion:** failure is predicted when the maximum of the 3 normal (principal) stresses reaches the materials ultimate tensile or compressive strength
- **Safety factor:** describes the structural capacity of a system beyond the expected loads

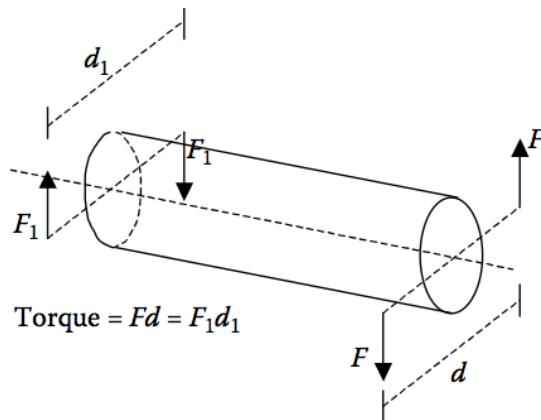
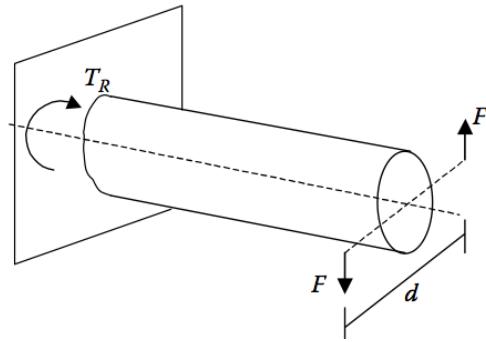
$$\text{safety factor (SF)} = \frac{\text{failure or yield stress}}{\text{maximum allowable or expected stress}}$$

- For a robust design, the safety factor should be  $> 2$



# Applying strain and stress in multiple dimensions

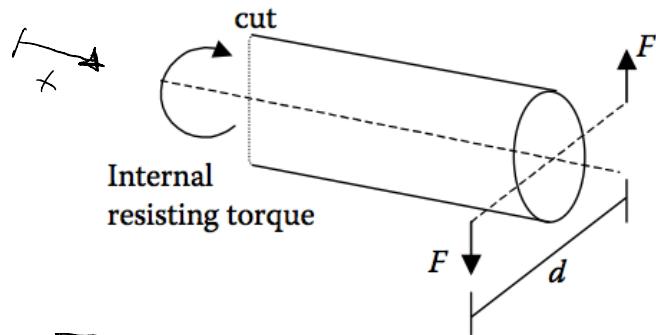
1. Torsion
2. Strain in torsion of a round bar
3. Stress in torsion of a round bar
4. Stress in a thin walled tube



# Torsion

When a structure is loaded by a pair of *couples* or a single couple and a fixed support we call the structure in **torsion**.

*Couple*: a pair of equal and parallel forces that act in opposite direction and tend to produce a rotation



$$\sum M = 0$$

$$\sum M_x = 0$$

## Torsion

The equation of equilibrium in this case is (with  $x$  being the axis along the rotation axis of the member in question) :

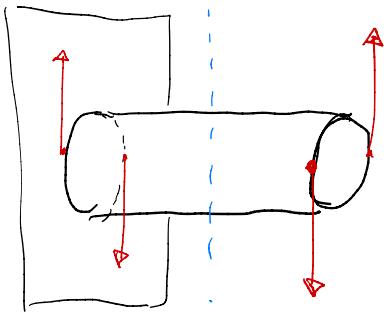
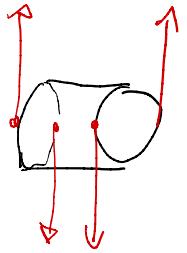
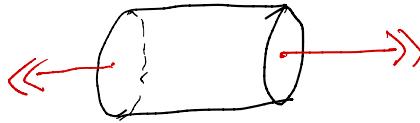
$$\sum M_x = 0$$

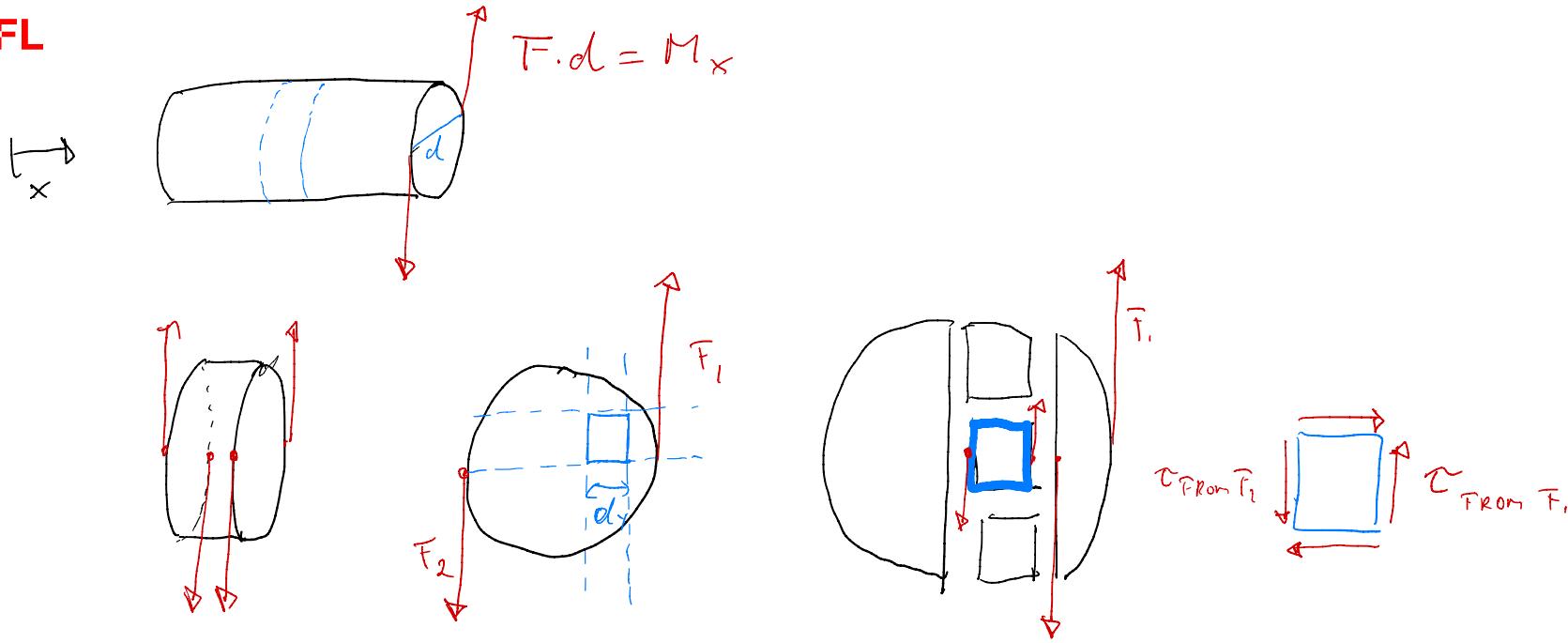
Using the methods of sections we see that an internal torque must exist that balances the external torque. This torque must be equal and opposite to the external torque.

# Torsional shear stress

- Torsion causes no direct tension or compression in the material: it creates *pure shear stresses* on each crossectional plane
- If we apply the method of sections to an object to “cut it into slices”, and apply a torque, then the internal resistance that keeps the stack of slices from rotating is the *torsional shear stress*.
- The result of the torsional shear stress on any (internal) crossectional plane is an internal resisting torque.







THE EFFECT OF TORSIONAL COUPLING ARE ONLY

SHEAR STRESSES  $\Rightarrow$  THESE SHEAR STRESSES CAN INDUCE  
SHEAR STRAINS

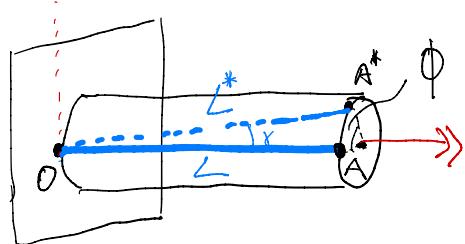
# Useful statements about torsion

$$\tau = G \cdot \gamma$$

- A plane section perpendicular to the body/torsion axis remains plane after torque is applied
- The shear strain  $\gamma(r)$  varies linearly from 0 at  $r=0$  to  $\gamma_{\max}$  on the outer edge
- For a linearly elastic material we can apply Hooke's law, where  $\tau$  is the shear stress,  $\gamma$  is the shear strain and  $G$  the modulus of rigidity:

① RELATE TORSIONAL SHEAR STRAIN TO A MEASURABLE  
Quantity : Angle of rotation

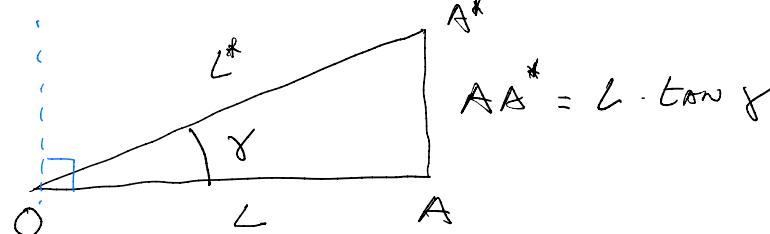
LET'S ASSUME A CYLINDER FIXED ON ONE END WITH RADIUS  $r = c$



FRONT FACE :



UNROLLED SIDE VIEW :

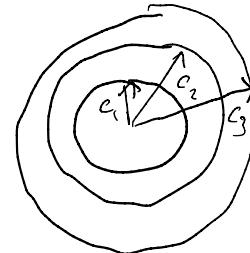


$$\phi c = L \cdot \underbrace{\tan \gamma}_{\approx \gamma}$$

$$\gamma = \frac{\phi c}{L}$$

SHEAR STRAIN ON THE OUTSIDE EDGE  
OF THE CYLINDER

$$\underline{\underline{\gamma(r)}}$$



$$\gamma_{\max, i} = \frac{\phi c_i}{L}$$

$$\lim_{c_i \rightarrow 0} \gamma_{\max, i} = \lim_{c \rightarrow 0} \frac{\phi c}{L} = 0$$

$\Rightarrow$  SHEAR STRAIN IS 0 AT  $r=0$

$\Rightarrow$  SHEAR STRAIN IS LIN. PROP. TO  $c$

$$\underline{\underline{\gamma(r)}} = \frac{r}{c} \gamma_{\max} = \frac{\phi r}{L}$$

② Apply Hooke's Law in Torsion:

RELATES TORSIONAL STRAIN TO TORSIONAL STRESS

$$\tilde{\epsilon} = G \cdot \gamma$$

$$\tilde{\epsilon}(r) = G \gamma(r) = G \frac{\phi r}{L} = \frac{r}{c} \tilde{\epsilon}_{MAX}$$

$\Rightarrow$  MAXIMUM SHEAR STRESS IS ALSO ON  
OUTSIDE OF CYLINDER

③ RELATE THE TORSIONAL LOAD (TORQUE) TO THE  
TORSIONAL SHEAR STRESS

■ STRESS = INTERNAL RESISTANCE TO THE EXTERNALLY APPLIED LOADS

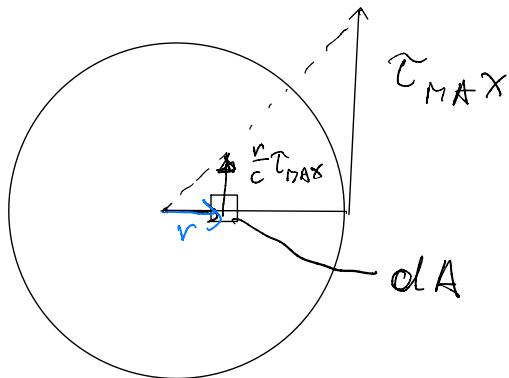
⇒ THE SUM OF ALL STRESSES MULTIPLIED BY THEIR  
AREA EQUALS THE TOTAL INTERNAL FORCE

$$\int_A \tau(r) \cdot dA = F \dots \text{TOTAL INTERNAL FORCE}$$

For torsional equilibrium we need to balance

All Tmg moments:

$$\sum M = 0$$



$$\vec{M} = \vec{F} \times \vec{r} = F \cdot r \cdot \sin \alpha$$

$$\text{Torque } T = |\vec{M}|$$

$$M = \int_{A} \underbrace{\tau(r) dA}_{\text{Force}} \cdot \underbrace{r \cdot \sin \alpha}_{\text{Force Area}} = T$$

$$M = \int_A \frac{r}{c} \tau_{\max} dA \cdot r = T$$

$$T = \frac{\tau_{\max}}{c} \int_A r^2 dA$$

$$c = \text{const} \\ \tau_{\max} = \text{const}$$

SECOND MOMENT  
OF AREA  
 $J$

$$T = \frac{\bar{c}_{\max}}{c} J$$

$$\Rightarrow \boxed{\bar{c}_{\max} = \frac{Tc}{J}}$$

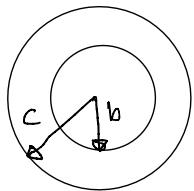
□ CIRCULAR CROSS-SECTION:

$$\boxed{J = \iint_A r^2 dA = \int_0^c 2\pi r^3 dr = 2\pi \left. \frac{r^4}{4} \right|_0^c = \frac{\pi c^4}{2} = \frac{\pi d^4}{32}}$$

TORSION FORMULAS FOR A CIRCULAR SHAFT:

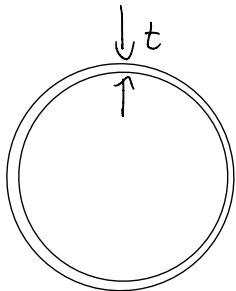
$$\boxed{\bar{c}(r) = \frac{Tr}{J} = 32 \frac{Tr}{\pi d^4}}$$

$J$  FOR A HOLLOW TUBE:



$$J = \int_A r^2 dA = \int_b^c 2\pi r^3 dr = 2\pi \left. \frac{r^4}{4} \right|_b^c = \frac{\pi}{2} (c^4 - b^4)$$

$$J_{\text{TUBE}} = J_{\text{BAR } r=c} - J_{\text{BAR } r=b}$$



THIN WALLED TUBE WITH THICKNESS  $t$

$$b \approx c \quad c-b = \frac{t}{3} \quad t < 0.1 \cdot c$$

$$J \approx 2\pi R_{\text{AV}} t$$

$$R_{\text{AV}} = \frac{b+c}{2}$$

④ Torsion Formula: Relate torque  $T$  to angle of twist  $\phi$

WE KNOW

$$1 \quad \gamma_{max} = \frac{c\phi}{L}$$

$$2 \quad \gamma_{max} = \frac{\tau_{max}}{G} = \frac{Tc}{JG}$$

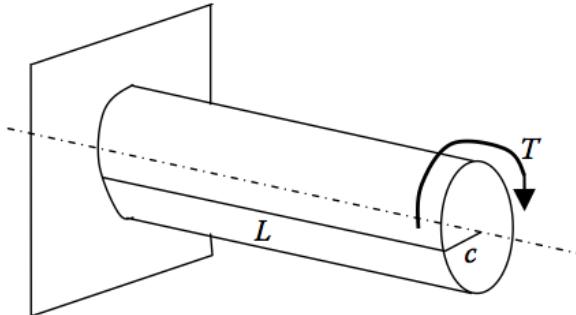
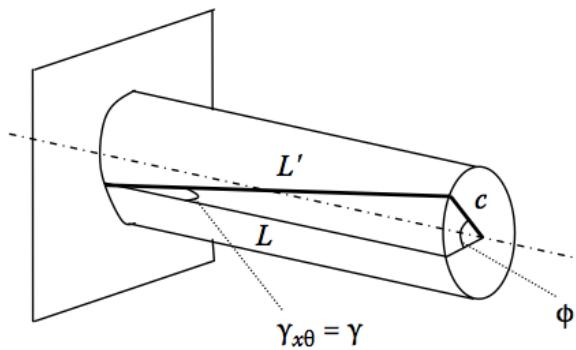
$$\frac{c\phi}{L} = \frac{Tc}{JG}$$

$$\boxed{\phi = \frac{T \cdot L}{JG}}$$

Hooke's Law for a cylindrical  
BAR in TORSION

For VARYING cross-sections or MATERIALS

$$\boxed{\phi = \int_0^L \frac{T}{J(x) \cdot G(x)} dx}$$



# Torsional shear strain

## Relating torsion angle to torsional shear strain

Before we can derive a formula for the shear strain, we first have to define the geometric shear strain. We do this for a solid cylinder fixed at one end.

The shear strain on the outside of the cylinder is then the change of the (initially right) angle between the line  $L$  and the vertical.

$$\gamma_{max} = \frac{\phi c}{L} \quad \gamma(r) = \frac{\phi r}{L}$$

$\Phi$  and  $\gamma$  are in radians

- We have assumed:
  - $\gamma$  varies linearly with  $r$
  - A straight line on a plane that is parallel to the front plane will remain a straight line

$$\gamma(r) = \frac{r}{c} \gamma_{max}$$

- We can therefore write with Hooke's law:

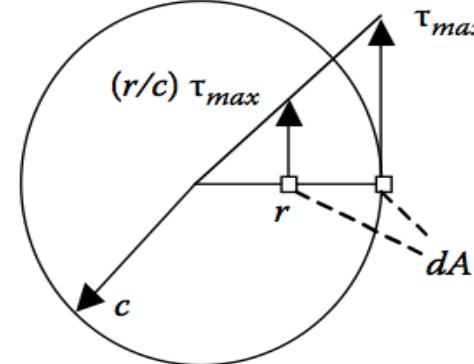
$$\tau(r) = G \frac{r}{c} \gamma_{max} = \frac{r}{c} \tau_{max}$$

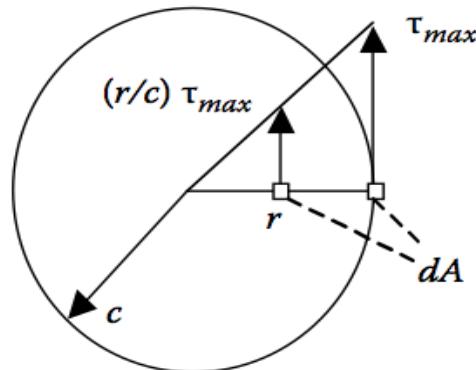
- We can visualize the shear stress distribution on the circular cross-section:
- REMEMBER: stress is the internal resistance to applied loads (per unit area)
- Assume an infinitesimally small area  $dA$ , the the force acting on this area  $dA$  is

$$F_{dA} = \tau(r)dA = \frac{r}{c}\tau_{max}dA$$

- The equilibrium condition must be satisfied:

$$\sum M_x = 0 = \sum \vec{r} \times \vec{F}$$





## *The torsion formula: relating torque to torsional shear stress*

- We can visualize the shear stress distribution on the circular cross-section:
- REMEMBER: stress is the internal resistance to applied loads (per unit area)
- Assume an infinitesimally small area  $dA$ , the the force acting on this area  $dA$  is

$$F_{dA} = \tau(r)dA = \frac{r}{c}\tau_{max}dA$$

- The equilibrium condition must be satisfied:

$$\sum M_x = 0 = \sum \vec{r} \times \vec{F}$$

# ***The torsion formula: relating torque to torsional shear stress***

- The internal moment has to balance the externally applied torque  $T$ :

$$\begin{aligned} T &= \vec{F} \times \vec{r} = Fr \sin \alpha \\ &= \underbrace{\int_A \frac{r}{c} \tau_{max} dA}_{\substack{\text{Force}}} \cdot \underbrace{r}_{\substack{\text{moment arm}}} \cdot \underbrace{\sin \alpha}_{\alpha=90^\circ} \\ &= \frac{\tau_{max}}{c} \underbrace{\int_A r^2 dA}_{J} \end{aligned}$$

- $J$  is the second moment of inertia (polar moment of inertia)

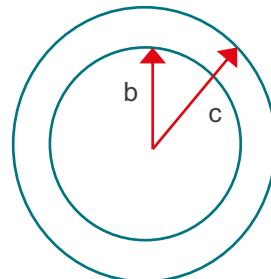
- The torsion formula is then:

$$\tau_{max} = \frac{Tc}{J}$$

$$\tau(r) = \frac{Tr}{J}$$

# The torsion formula for a thin walled tube

- For a thin walled tube, the torsion formula can be approximated by:



$$\tau = \frac{Tr}{J} \approx \frac{T}{2\pi r^2 t}$$

$$J \approx 2\pi r^3 t$$

with

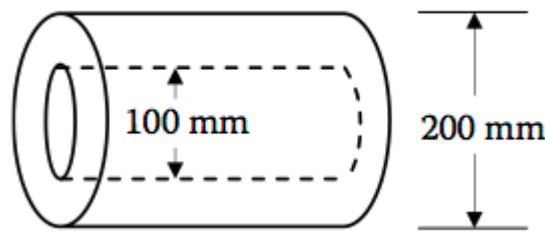
$$t = (c - b) \text{ and}$$

$$r = \frac{b + c}{2}$$

- From Hooke's law we know:
- From the torsion formula we know:
- From the strain-assumption we know:
- We then get Hooke's law in torsion for a cylindrical bar:

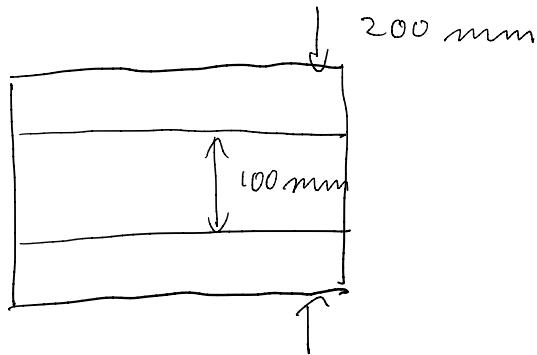
$$\begin{aligned}\gamma_{max} &= \frac{\tau_{max}}{G} \\ \tau_{max} &= \frac{Tc}{J} \\ \gamma_{max} &= \frac{c\phi}{L}\end{aligned}$$

$$\phi = \frac{TL}{GJ}$$



## Examples for Torsion: Hollow shaft

A 100-mm-diameter core is bored out from a 200-mm-diameter solid circular shaft (Figure 4.35). What percentage of the shaft's torsional strength is lost due to this operation?



given: GEOMETRY 1: 200mm solid BAR

GEOMETRY 2: 200 mm outer diameter, 100 mm inner diam.

ASKED: DIFFERENCE in strength of the two structures

Gov. princ: Torsion Formula:  $\tau_{max} = \frac{Tc}{J}$

ANSWER:

$$\tau_{max}^{(1)} = \frac{T_{max}^{(1)} \cdot c}{J_1}$$

$$\tau_{max}^{(2)} = \frac{T_{max}^{(2)} \cdot c}{J_2}$$

$$J_1 = \frac{\pi}{2} c^4 \quad c = 100 \text{ mm}$$

$$J_2 = \frac{\pi}{2} (c^4 - b^4) \quad b = 50 \text{ mm}$$

COMPARE THE TWO  $\tilde{c}_{\max}$ :

$$\tilde{c}_{\max}^{(1)} = \tilde{c}_{\max}^{(2)} = \tilde{c}_u$$

$$\frac{\tilde{T}_{\max}^{(1)} \cdot c}{J_1} = \frac{\tilde{T}_{\max}^{(2)} \cdot c}{J_2}$$

$$\tilde{T}_{\max}^{(2)} = \tilde{T}_{\max}^{(1)} \cdot \frac{J_1}{J_2} = \tilde{T}_{\max}^{(1)} \cdot \frac{c^4 - b^4}{c^4} = \tilde{T}_{\max}^{(1)} \left(1 - \frac{b^4}{c^4}\right)$$

$$= \tilde{T}_{\max}^{(1)} \cdot 0.9375$$

∴ reduction is 6.25%

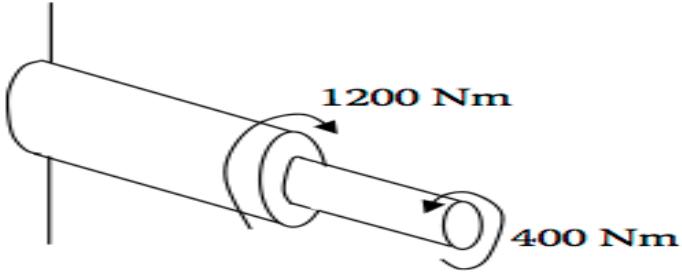
$$\phi = \int_0^L \frac{T}{GJ} dl \quad \phi = \sum_i \frac{T_i L_i}{J_i G_i}$$

## Hooke's law for torsion

This form of Hooke's law can easily be used to measure the rigidity modulus of a material in a torsional test experiment by applying a torque onto the cylindrical test sample and measure the angle of twist. Since L and J are geometrical parameters that can be measured, G can be calculated from the slope of the experimental data.

For bars with varying cross-sections or materials properties we can sum up the twist angles as:

|                     | Spring          | Bar in Tension           | Bar in Torsion           |
|---------------------|-----------------|--------------------------|--------------------------|
| Geometric property  | $\Delta x$      | $\delta$                 | $\phi$                   |
| Materials property  | $N.A.$          | $E$                      | $G$                      |
| Hooke's Law         | $F = k\Delta x$ | $P = \frac{EA}{L}\delta$ | $T = \frac{GJ}{L}\phi$   |
| Strain distribution | $N.A.$          | $\tau \neq \tau(r)$      | $\tau(r) = \frac{Tr}{J}$ |

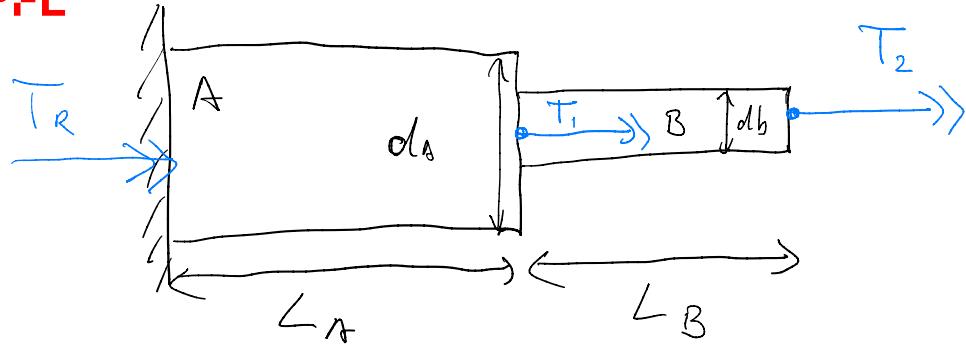


## Examples for Torsion: composite shaft

Two shafts ( $G = 28 \text{ GPa}$ )  $A$  and  $B$  are joined and subjected to the torques shown in the figure below. Section  $A$  has a solid circular cross section with diameter 40 mm and is 160 mm long;  $B$  has a solid circular cross section with diameter 20 mm and is 120 mm long.

Find:

- the maximum shear stress in sections  $A$  and  $B$ ; and
- the angle of twist of the right-most end of  $B$  relative to the wall.



Given: Geometry:  $L_A = 160 \text{ mm}$

$$L_B = 120 \text{ mm}$$

$$d_A = 40 \text{ mm} \Rightarrow c_A = 20 \text{ mm}$$

$$d_B = 20 \text{ mm} \Rightarrow c_B = 10 \text{ mm}$$

Loads:  $T_1 = -1200 \text{ Nm}$  (right hand rule)

$$T_2 = 400 \text{ Nm}$$

MAT. prop:  $G = 28 \text{ GPa}$

Asked: a)  $\tau_{\text{MAX}}^A, \tau_{\text{MAX}}^B$  b)  $\phi$  at end of bar

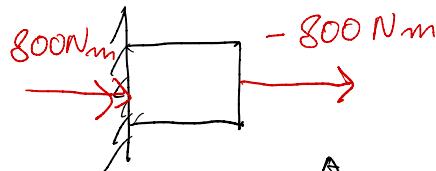
$$\text{Gov. Pkinc: } \tau_{\max} = \frac{T_c}{J} \quad \phi = \frac{TL}{JG} \quad J = \frac{\pi}{2} c^4$$

Solutions:

$$\text{a) } \sum M = T_R + T_1 + T_2 = 0$$

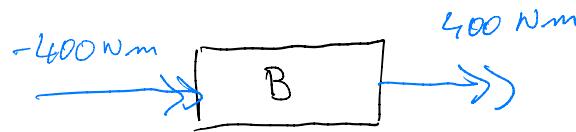
$$T_R = -(T_1 + T_2) = -(-1200 + 400) = +800 \text{ Nm}$$

### METHOD OF SECTIONS



$$[\tau_{\max}^A] = \frac{T_c}{J} \Rightarrow \frac{T_R \cdot c}{\frac{\pi}{2} c^4} = \frac{2 T_R}{\pi c^3} = \frac{2 \cdot 800}{\pi (0,02)^3} = 63.7 \text{ MPa}$$

in Element B:



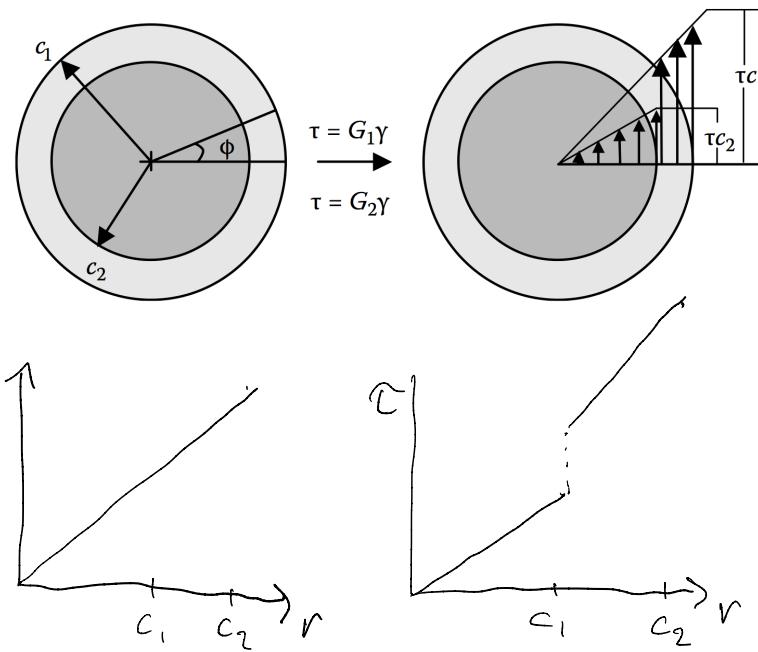
$$\Rightarrow \tau_{\max} = \frac{T_e}{J} = \frac{2T}{\pi c^3} = \frac{2 \cdot 400}{\pi (0.01)^3} = 255 \text{ MPa}$$

b) Superposition:  $\phi = \phi_A + \phi_B$

$$\phi_A = \frac{T_A \cdot L_A}{J_A G} = \frac{-800 \text{ Nm} \cdot 0.16 \text{ m}}{\frac{\pi}{2} (0.02)^4 \cdot 28 \cdot 10^9 \text{ Pa}} = -1,82 \cdot 10^{-2} \text{ rad}$$

$$\phi_B = \frac{T_B \cdot L_B}{J_B G} = \frac{400 \text{ Nm} \cdot 0.12 \text{ m}}{\frac{\pi}{2} (0.01)^4 \cdot 28 \cdot 10^9 \text{ Pa}} = +1.09 \cdot 10^{-1} \text{ rad}$$

$$\phi_{\text{TOT}} = \phi_A + \phi_B = 0.091 \text{ rad} = 5,21^\circ \text{ OF TWIST CCW.}$$



# Hooke's law for torsion- Multi material bars

If the bar consists of a core-shell structure, the strain is still linearly increasing.

But because of the change in materials properties, the stress is discontinuous.